
Engineering with Computers (2000) 16: 209–235
 2000 Springer-Verlag London Limited

A Survey of Design Rationale Systems: Approaches, Representation,
Capture and Retrieval

W. C. Regli1, X. Hu2, M. Atwood3 and W. Sun2
1Geometric and Intelligent Computing Laboratory, Department of Mathematics and Computer Science, Drexel University.
Philadelphia, PA, USA;2Rapid Product Development Center, Department of Mechanical Engineering and Mechanics, Drexel
University, Philadelphia, PA, USA;3College of Information Science and Technology, Drexel University, Philadelphia, PA, USA

Abstract. This paper provides a survey on recent research
in the area of design rationale. The study of design rationale
spans a number of diverse disciplines, touching on concepts
from research communities in mechanical design, software
engineering, artificial intelligence, civil engineering, com-
puter-supported cooperative work, and human-factors and
human-computer interaction research. We focus this survey
on prototype design rationale systems for these application
domains, and put forward several major criteria with which
to describe and classify design rationale systems, including
argumentation-based, descriptive, process-based approaches.
Further, we attempt to abstract the place of systems and
tools for design rationale capture and retrieval in the context
of contemporary knowledge-based engineering and Com-
puter-Aided Design (CAD) tools. This survey is structured
around classes of fundamentally different approaches, their
representation schema, their capture methods and retrieval
techniques. A number of recent design rationale systems,
including JANUS, COMET, ADD. REMAP, HOS, PHIDIAS,
DRIVE and IBIS are analysed. We conclude with an assess-
ment of current state-of-the-art and a discussion of critical
open research issues.

Keywords. Design history; Design intent; Design
rationale capture; Engineering design process;
Knowledge management; Software design; User
interface design

1. Introduction

Design rationale is an explanation of why an artifact,
or some part of an artifact, is designed the way it
is [1]. Design rationale includes all the background
knowledge such as deliberating, reasoning, trade-off

Correspondence and offprint requests to: Professor W. Regli,
Department of Mathematics and Computer Science, Drexel Uni-
versity, Korman Center, Rm 238, Philadelphia, PA 19104, USA.
E.mail: regl:@drexel.edu

and decision-making in the design process of an
artifact – information that can be valuable, even
critical, to various people who deal with the artifact
[2–6]. These views are consistent across the whole
spectrum of engineering design disciplines, from
mechanical design and architecture-engineering-
construction to software and user-interface design.

Usually a developed artifact is defined in terms
of specifications and parameters to describe the way
it works, but does not include a description ofwhy
it is designed the way it is. Design rationale is
usually not documented completely, and the colla-
borating work teams often need considerable
amounts of communication to understand others’
work [7]. Activities to maintain and redesign the
artifact require much effort to understand the pre-
vious work. Many believe that keeping track of the
design rationale will provide a great aid to designers:
it helps to structure design problems, and provides
a basis for designers to explore more design options.
Design rationale systems can be used as a basis to
discuss and reason among collaborating designers:
to record the history of design process; to modify
and maintain existing designs, or design similar
artifacts [8,9].

Much progress has been made on the development
of design rationale approaches and tools since the
early 1980s. The research has ranged from basic
observations about the design process [10] to differ-
ent approaches to capturing design rationale. In this
previous work, basic concepts were discussed and
frameworks for design rationale were proposed. A
number of important prototypes have been
developed, but few design rationale systems have
made it into practical use in industry. To this end,
the fundamental goal of this survey paper is to
answer the questions:

I If design rationale is useful (most agree on this



210 W. C. Regliet al.

point), why are design rationale systems not in
widespread use in industry?

I How can design rationale systems better support
engineering design?

I What are the major obstacles to the creation of
truly useful and usable design rationale systems?

For a more comprehensive background reference of
the design rationale field, interested readers are
referred to the excellent 1996 edited collection by
Moran and Carroll [11], as well as discipline-specific
overview papers [12,13]. Recent research has a tend-
ency to combine design rationale systems with other
forms of design support tools [14,15]. Lee’s [12]
recent article describes some of the major open
issues in design rationale research. We present this
paper as a system-centred overview, with the goal
of helping current and future builders of design
rationale support environments sort through the
many issues of system development. Furthermore,
we put forth presently outstanding issues for design
rationale research and practical system deployment
and use.

This survey is organised as follows. Section 2
gives the framework of the survey, basic concepts of
design rationale are introduced and design rationale
systems or prototypes are reviewed in chronological
order and summarised. Section 3 describes basic
approaches to design rationale. Section 4 describes
the representation schema of design rationale sys-
tems. Sections 5 and 6 describes the capture and
retrieval of design rationale, respectively. Section 7
touches on some of the related research areas that
support the study of design rationale. Section 8
provides brief examples of several different uses
and applications for design rationale systems. In
Section 9, we summarise our review, and discuss
the open research issues that must be addressed
to advance the state-of-the-art in design rationale
systems.

2. A Framework for Design Rationale

The research on design rationale covers a large
range of topics; this survey focuses on the review
and analysis of existing systems and prototypes. In
this context, a design rationale system intends to
let designers think and discuss design within a
certain knowledge representation framework.

Figure 1 illustrates how a prototypical design
rationale system works. Based on arepresentation
schema, the decisions and reasoningare either
recordedby designers themselves using documents,

Fig. 1. Flow of information in a design rationale system frame-
work.

or capturedby a design rationale system’s monitor-
ing module. The capture of design rationale can
occur from the design teams’ communications via
Computer-Supported Cooperative Work (CSCW)
tools, such as electronic mail, phone conversions,
and archived design meetings and designers’ note-
books. The design knowledge captured is organised
by rules, which are primarily determined by arep-
resentation schema, and stored into thedesign
rationale sytemknowledge-base – to then be used
in later design activities. If a design is similar to
an existing design, the design rationale for the for-



211A Survey of Design Rationale Systems

mer design can be retrieved from the design ration-
ale database, providing the suggestions and ideas
relevant for the current design task. Some systems
(e.g. the CRACK system [16]) also include critiqu-
ing tools, which are based on domain knowledge
and can justify design decisions. Generally, a design
rationale system is supported by knowledge-based
systems and Computer-Aided Design and Manufac-
turing (CAD/CAM) systems, opening up a wide
range of possibilities in supporting design activities.

We break the core of our survey down based on
major systems and prototypes, and examine the four
following issues.

Approaches to developing design rationale systems.
Since the first approach to design rationale was
proposed in 1970 [17], various other approaches
have been developed. The main approaches arepro-
cess-orientedand feature-oriented. In fields with a
relatively high degree of standardisation, the feature-
oriented approach is frequently used. Feature-
oriented approaches focus on the representation of
artifacts and the body of established rules governing
the design process. In dynamic design domains, in
which accepted design principles may not be well
established, the process-oriented approach is often
used to create a historical representation of the
design process [2,3]. The integration of design
rationale systems with other design support tools
(knowledge-based, CAD and collaborative work)
also influences the approach.

Representation schema for design rationale. A
design rationale representation explicitly documents
the reasoning and argumentation occurring in design
[5]. The representation determines the methods used
to capture and retrieve the design rationale, so it is
important to select an appropriate representation
schema.

Argumentation-based design rationaleis a mainly
representational approachwhich uses a semi-formal
graphical format [2] for laying out the structure of
arguments. It uses a node-and-link representation,
which means it uses typed links to interconnect
typed nodes [18]. A node represents a component,
while a link represents a relationship. With argumen-
tation, designers can easily maintain consistency in
decision-making, keep track of decisions, and com-
municate about design reasoning with each other.
The most common argument structures for selecting
and organising information are IBIS, PHI, QOC
and DRL.

Some systems use adescriptive approach[3] to
represent design rationale, which records the history

of design activities, work flow and communication
between designers [18]. More specifically, it records
what decisions are made, when they are made, who
made them, and why [18]. This approach is used
in dynamic design domains, in which the problems
are vague and the solution technology is poorly
understood, and therefore little or no standardisation
of designed artifacts exists. The descriptive approach
emphasises minimising the intrusion to designers by
making design rationale capture as transparent as
possible. This makes re-usability of the design
rationale incidental [3].

Capture of design rationale. In a design process,
design rationale is captured by recording reasoning,
decisions, options, trade-offs, etc., and constructing
a formal [9] or semi-formal structure [2] so that the
design rationale can be used in the decision-making
process during design.

Determining what information to capture during
design, and how to capture it, is a fundamental
problem many have tried to address. Gruber [19]
proposed that rationale support tools should focus
on capturing the information that is used to answer
designers’ questions, as well as data that might be
used to infer answers to later questions. The depen-
dency relations among the data and information are
very useful, and should be captured as well. In this
environment, rationale explanations are constructed
in response to information requests, from back-
ground knowledge and information captured during
design.

Applying this philosophy in a design environment
using traditional CAD drawing tools, which are
focused on detailed design and only capture data
about the physical or logical aspects of an artifact,
the design rationale support tools should capture
information such as the intended behaviour or func-
tion of a device, and the justification for design
decisions [4].

The design rationale capture process generally
consists of two steps:knowledge recordingand
design rationale construction. The first involves
capturing as much raw information as possible
during the design process. The second step is the
extraction, organisation and storage of rationale
knowledge, which is based on the design rationale
representation schema and constraints in the design
domain. We observed that the recording and con-
struction processes have been implemented in
design rationale systems through bothautomatic
captureapproaches and those requiringuser-inter-
vention (in which designers are required to input



212 W. C. Regliet al.

or record the design discussions, decisions and
reasonings themselves).

Retrieval of design rationale. The retrieval of design
rationale is determined by the representation schema
and the requirements of the engineering domain for
which the knowledge is being used. At each differ-
ent design stage, there are various purposes for
accessing design rationale: to answer a user query,
to show the logical aspects of an important issue,
to monitor design process, or to get a document
about the designed artifact [31,27,33]. Different
access strategies are needed to help users with differ-
ent purposes. The retrieval of design rationale can
be active or passive. It is desirable that some design
rationale retrieval be triggeredautomaticallyaccord-
ing to the design context [24].

Given a representation schema, tools supporting
functions such asnavigation by designers[16] and
retrieval strategies[27] can be implemented. The
integration of design rationale systems with other
design support systems can greatly improve the
retrieval of design rationale. The retrieval of design
rationale in such systems is usually involved in the
design reasoning process, and supported by
knowledge-bases in the design support systems.

A design rationale system is not effective as a
standalone system. Together with other design sup-
port systems, such as CAD or Computer-Aided
Software Engineering (CASE) tools, it contributes
to the design process by providing designers with a
knowledge representation framework, as well as
tools to capture design rationale, design reasoning
and communication during the design process. Ide-
ally, such systems can transform raw design ration-
ale and design history into knowledge for later re-
use – providing facilities to retrieve design rationale
when needed for review, maintenance or redesign.
Figure 2 shows the architecture of a general design
rationale system, generated from our survey by syn-
thesising the functions of different systems. The
design rationale systems or prototypes that we
reviewed generally did not include all of the features
indicated in the diagram.

To provide a general view of the development of
the research area, we list the design rationale sys-
tems reviewed (in chronological order) according to
the catalogue described above in Table 1. Each
system is described in five dimensions:knowledge
representation, capture, retrieval, approachand the
application domain. The following sections will con-
centrate on a detailed discussion of the systems in
the table.

3. Approaches to Building Design
Rationale Systems

At different stages of the design process of an
artifact, design can be moreprocess-orientedor
more feature-oriented. At the initial design stage, as
the design progresses from the requirements to a
conceptual design, there are many discussions con-
cerning the requirements (which may not be well
specified), and much exploration of options and
trade-offs since there may be no fixed solution path
[34]. This design process is more dynamic, with
knowledge organised according to design progress,
so the approach of design rationale at this stage is
more process-oriented. At the detailed design stage
or in routine design, design process is more con-
strained by the rules in the field or domain knowl-
edge, since it is feature-oriented, [24,32], in which
features could be function, performance, design,
manufacture or implementation. These differences in
the characteristics of the two different phases of
design naturally lead to the two different approaches
to design rationale.

3.1. Process-Oriented Approaches

Process-oriented design rationale systems emphasise
the design rationale as ahistory of the design pro-
cess. Process-oriented design rationale has been most
often used in domains where the problems are
vague, the solution technology is poorly understood,
or both, and in which there is little or no standardis-
ation of designed artifacts [3]. Unlike feature-ori-
ented systems, which construct design rationale as
a logical structure, design rationale is merely
descriptive in a process-oriented system. Most exist-
ing design rationale systems are process-oriented,
with issues, options and arguments captured and
organised according to the design progress.

This approach originated from the Issue-Based
Information System (IBIS) framework for argumen-
tation [17]. A number of other frameworks have
been developed since then, including DRL [1] and
PHI [20].

The representation schema of this kind of ration-
ale is generally graph-based, using nodes and links,
with nodes indicating issues (questions), positions
(options) and arguments, and links indicating the
relationships among the nodes. This kind of rep-
resentation schema provides a flexible structure and
great convenience in recording design rationale from
communications of design progress. This is
especially true for multimedia communications, since



213A Survey of Design Rationale Systems

Fig. 2. The general architecture of a design rationale system.

multimedia nodes could be included as part of the
design schema [26,18].

Figure 3 shows an example of the process-based
approach to design rationale. In this example, a
material handling system is being planned for a
manufacturing plant in design. At this initial design
stage, there is only a functional specification, with
no restrictions on the step-by-step evolution of the
design. With the process-based approach to design
rationale, the step-by-step reasoning is captured and
represented according to different tasks in the func-
tional specification. An IBIS schema is used here
for design rationale representation.

The challenge with this approach is to convert
the captured information intostructured design
rationale – to create links among nodes – to make
the information accessible. A number of approaches
have been used to create links among nodes: PHID-
IAS [18] links the nodes by authoring and indexing;
REMAP/MM [26] supports hyper-links among
design deliberation records and multimedia objects.
This conversion process presents a large overhead
to the design rationale maintainer (a smart computer
or a patient human being). Another method to
organize the recorded information is incremental
formalisation, described in Shipman and McCall
[35].

Once the nodes are linked, design rationale reuse
becomes a matter of retrieval of the knowledge. The

rationale could be viewed by traversing from one
node to another by way of links, or be retrieved in
response to queries. There are a number of tech-
niques to deal with this; more detailed information
on retrieval is given in Section 6.

The process-oriented approach to design rationale
helps designers by providing descriptive history
information, to answer questions such as who, why,
what and when. Currently, it is not easy to translate
this into representations that can be understood and
processed by computers, so this approach provides
support to the design process only when designers
access and understand it [21].

3.2. Feature-Oriented Approaches

A feature-orientedapproach starts from the design
space of an artifact, where the rules and knowledge
in the specific domain must be considered in design
decision making. A design decision not supported
by the rules of knowledge needs to be confirmed, so
it will cause a revision of the rules and knowledge in
the domain [24].

A feature-oriented system is usually developed in
a task specific contextusing an empirical study.
Some models are extended from genericDesign
Decision Support(DDS) systems by adding primi-
tives to explicitly represent design process. Gener-



214 W. C. Regliet al.

Table 1. Table of prototype design rationale systems.

System Name Knowledge Knowledge Knowledge Approach Design Domain Year
Acronym Representation Capture Retrieval

IBIS [17] Issue-based UI Navigate PO Generic 1970
PHI [20] Extending IBIS UI Navigate PO Generic 1987
QOC [5] Design Space Analysis UI Navigate PO Generic 1990
DRL [1] Representing elements UI Navigate PO Generic 1991

of decision making
CRACK [16] N/A Auto Trigger FO Kitchen 1989
VIEWPOINTS [16] IBIS N/A Navigate FO Kitchen 1989
JANUS [21] PHI Auto Hybrid FO Kitchen 1989
IBIS-style browser IBIS Auto Navigate PO Generic 1991
[22]
COMET [23] LOOM UI Navigate FO Sensor-based tracker 1992

software
ADD [24] Argumentation & UI Trigger FO HVAC 1992

Model-based
REMAP [25] IBIS UI Query PO Generic 1992
REMAP/MM [26] IBIS Auto Query PO Generic 1995
ADD1 [27] Rhetorical Structure UI Query PO HVAC 1997
HOS [18] PHI Auto Trigger PO Generic 1997
PHIDIAS [18] PHI Auto Trigger FO 2D, 3D 1997

PO
KBDS-IBIS [14,15] IBIS UI Query & FO Chemical Plant 1997

Navigate PO
DRIVE [28] PDN UI Query FO Building 1997
DRARS [29] QOC N/A N/A FO Building 1995
KRITIK [30,9] SBF UI Query FO Mechanical 1993
IDIS [31] IBIS UI Navigate FO Chemical Plant 1998
RCF [32] N/A Auto N/A PO N/A 1999

Capture Method: User-Intervention (UI) or Automatic (Auto)Representation Method: Feature-Oriented (FO) or Process-Oriented (PO)
Retrieval Method: Navigate, Query, Trigger or Hybrid.

Fig. 3. An example of process-based approach: the planning of
a material handling system for a manufacturing plant.

ally, these kinds of systems contain domain knowl-
edge-bases, which can be used to support automated
reasoning. CRACK is a typical feature-oriented sys-
tem [16]; its detailed description can be found in
the following sections.

In a feature-oriented design rationale system,
existing knowledge-bases usually support the gener-
ation of design rationale, so representations of design
rationale are usually more formal than in process-
oriented systems. In some systems, the design
rationale is represented with links to the existing
knowledge-base. The retrieval and reuse of design
rationale is very natural in the design process of
later artifacts. An example model is GTMD [36],
which is used to structure the acquisition process

within DESIRE, a formal framework for compo-
sitional modelling.

With this approach, design rationale systems are
usually included in the design systems. This helps
designers by storing design rationale in a formal
format which can be processed automatically, so it
can provide active support to design or redesign
processes such as the evaluation of design decisions
and conflict resolution [28].

While the feature-oriented design rationale
approach provides active support to design activities,
it has the limitation that only part of design rationale
(i.e. how the artifact designed satisfies the
requirements) can be handled: other parts (i.e.
option-exploration, trade-off, who, when, why, etc.)
cannot be handled with this approach [30].

Combinations of both of these approaches have
been proposed to help overcome their individual
limitations. Systems with such a hybrid approach
not only provide logical structure for design ration-
ale, but also record the history of the design process.
KBDS-IBIS is such an example [14].



215A Survey of Design Rationale Systems

3.3. Integration with Other Design Support
Systems

A design rationale system is usually positioned as
a technology to augment Computer Aided Design
(CAD) and other engineering activities. In this way,
it is not intended as a stand-alone system. Its smooth
integration with other design support systems affects
its effectiveness and efficiency. Figure 2 gives a
general view of the integration of design rationale
systems with other systems.

There is a trend towards tight integration of design
rationale tools with other design representations [2],
with the design rationale system being treated as an
extension of the design system. Design rationale
systems integrated with commercial CAD system
have been extensively reported [14,31,32,27,24,37,
26,18]. In some of these systems, the integration
was achieved by the combination of design rationale
system with knowledge-based design decision sup-
port systems [31,27,37,26]. To integrate design
rationale tools with design systems, there should
be an integration of representation schemas. This
improves the design system, makes the implemen-
tation of design rationale easier [9], and makes the
capture and retrieval of design rationale driven by
implementation concerns. The integration of design
rationale with Computer Supported Cooperative
Work (CSCW) and telecommunications was reported
in PHIDIAS [26,18].

Sections 4–6 give a more detailed discussion on
representation schema, capture and retrieval.

4. Representation Schemas

Due to the increasing complexity of computer sys-
tems and demand for higher reliability, there is a
growing interest in developing design systems to
help designers record and re-use design rationale.
Especially for the design and maintenance of large
systems (such as software systems), the capture and
re-use of design rationale information system can
be essential over the life-span of the product.
Designing an artifact involves considering many
alternatives – where one must address, evaluate, and
ultimately accept or reject each alternative. A design
rationale system needs to record the analysis of the
various alternatives so that designers can easily
make their decision; after designing, the rationale
for a design should be kept for future use. How to
organise this enormous amount of diverse material,
and build it into a usable structure, is a critical
issue [2]. A goodrepresentation schemais vital to

enabling effective design and reuse. Much attention
has been focused on developing methods, notations
and tools for recording rationales, the space or
history of arguments surrounding the actual decision
made as development progress is represented. An
overview of some of the most prominent techniques
is given in the following sections.

4.1. The Issue-Based Information System
(IBIS)

The Issue-Based Information System (IBIS) uses an
issue-basedapproach that has been used in architec-
tural design, city planning and public-policy dis-
cussion. The key issues of IBIS are usually articu-
lated as questions, with eachissue followed by one
or more positions that respond to the issue. Each
position can potentiallyresolveor be rejected from
the issue.Argumentseither support or object to a
position. Figure 4 shows the relationship among
three elements in IBIS. An IBIS-style browser [22]
is the implementation of a merged issue-based and
truth-maintenance[38] dependency structure. Such
browsers use a graphical shorthand to represent node
types and link types in a graph-based structure.
Issues, positions and arguments are the main compo-
nents captured in the graph. One characteristic of
such a system is that it can provide immediate
feedback to designers by indicating the belief status
of various issues (via colour or other notations on
the nodes).

The Representation and Maintenance of Process
knowledge (REMAP) system [25] uses theTelos
language to represent knowledge, and is also based
on the Issue Based Information Systems (IBIS)
method. The history about design decisions in the
development life-cycle is calledprocess knowledge.
Much of this knowledge, involving the deliberation
on alternative requirements and design decision, is

Fig. 4. The relationship of issue, position and argument.



216 W. C. Regliet al.

lost in the course of designing and changing such
systems. REMAP records the argumentation related
to deliberations and solves the process knowledge
loss problem. As the deliberation proceeds among
designers during the design process. REMAP lists
various issues, such as a problem, a concern or a
question that requires discussion for the problem
solving to progress; positions (alternatives) for solv-
ing each issue are responded using a process model
window, each of these positions has different sup-
porting arguments, each of which in turn is sup-
ported by assumptions. Issues are resolved by mak-
ing a decision to select a position, thereby leading
to a constraint that needs to be satisfied by design
objects. Therefore, process knowledge is related to
the objects that are created during the requirements
engineering process.

Researchers have recognised that an explicit rec-
ord of design rationale is an important requirement
for effective design support. As computer systems
supporting all aspects of the design process evolved,
many have pursued integrating the record of ration-
ale with the history of the evolution of the design
artifact [39,40]. An integration of these two disjoint
data models could bring many benefits for design,
such as improved documentation of the design pro-
cess and the verification of the design methodology
and the resulting design artifact.

The Knowledge Based Design System-IBIS
(KBDS-IBIS) [14] is the result of integrating a
representation of design rationale (in the form of
IBIS networks) to the design alternative history
maintained by a design support system (KBDS).
KBDS-IBIS has been used in chemical process plant
design, and put forward some extensions to the
structure of standard IBIS networks. KBDS-IBIS
introduced three new classes of object –artifacts,
steps and tests. These integrate the representation
of argumentationwith the design process history.
KBDS-IBIS also can automatically generate two
types of reports:step reports, which describe the
design rationale for the evaluation of one design
alternative relative to another;issues reports,
describing the deliberation leading to a particular
design. These record in a prescriptive fashion –
allowing the design team to identify which parts
must be re-designed in the light of a change in the
internal assumptions, constraints or specification, or
a change in any external factors affecting the design.
In an integrated and prescriptive form, KBDS-IBIS
explicitly maintains the history of the design goals,
decisions, justifications and assumptions coupled
with the evolving description of a chemical process
plant during its conceptual design.

Chung [31] described an Integrated Design Infor-
mation System (IDIS) that supports the design of
chemical plants. This system also places particular
emphasis on supporting the design process so that
the recording of design rationale may be done easily.
A commercial system from Enviros Software Sol-
utions, DRAMA (Design RAtionale MAnagement),
was based on the ideas of the KBDS prototype from
the University of Edinburgh. It uses a graphical user
interface and an object-oriented database to store
and structure reasoning relating to design
(http://www.enviros.com/drama/).

4.2. Procedural Hierarchy of Issues (PHI)

The Procedural Hierarchy of Issues (PHI) [20]
extends IBIS by broadening the scope of the concept
‘ issue’ and by altering the structure that relates
issues, answers and arguments. First, it simplifies
relations among issues by using the ‘serve’ relation-
ship only. Secondly it provides two methods to deal
with design issues: deliberation and decomposition
(i.e. to give answers to the issue or to break down
the issue into a variety of subissues which in turn
could be deliberated or decomposed). The prime
issue is by definition the whole project. PHI avoids
raising irrelevant and trivial issues [20]. Another
advantage of PHI is that the issues, subissues,
answers and arguments can be presented in the
format of outlines, as shown in Fig. 5. Compared
with IBIS, PHI provides dependency relationships
between issue resolutions and considers the pros and
cons of alternative answers [41]. In addition, it more
completely and accurately models the task structure
of the design process and the information useful for
tasks [21].

VIEWPOINTS [16] is a hypertext system for
argumentative kitchen design based on the PHI
design methodology. It is a a tool which supports
the argumentative approach within the design pro-
cess. The elements of VIEWPOINTS areissues,
answers, argumentsand graphics. It provides a
graphical interface to facilitate its use, enabling
designers to do extensive browsing and make
decisions.

JANUS [21] is the integration of the CRACK
and VIEWPOINTS systems. CRACK [16], another
computer-supported design rationale system, is a
knowledge-based critic which has information about
how kitchen appliances can be assembled into a
functional kitchen. JANUS allows architectural and
interior designers to graphically construct artifacts
by direct manipulation, and at the same time receive



217A Survey of Design Rationale Systems

ISSUE:

What kind of conveyers should be used in material handling?

SUBISSUE:

1. What kind of conveyers should be used in bulk material handling?

%

2. What kind of conveyers should be used in unit material handling?

ANSWERS:

1. Gravity conveyers

SUBANSWERS:

1. chutes, skate wheel conveyers

2. roller conveyers

ARGUMENTS:

1. Its advantage is low cost, relatively low maintenance, and negli-

gible breakdown rate.

2. Its requirement is the ability to provide the necessary gradient in

the system configureation.

x%

2. Powered conveyers

%

3. Chain-driven conveyor

%

4. Power-and-free conveyers

%

Fig. 5. An example of PHI: select conveyers for material handling.

information useful to what they are doing from
hypertext activated by knowledge-based agents.
From JANUS and its predecessors CRACK and
VIEWPOINTS, we can see that integrated support
for construction and argumentation is necessary for
full support of design.

PHIDIAS [18] is a hypermedia system which is
based on PHI; like other rationale representation
schemes, it uses a graph-based node-link structure.
PHIDIAS represents all of its knowledge, including
semi-formal rationale as well as formal represen-
tations of physical objects, facts and rules, in this
graph-based format. In PHIDIAS’s graphs, both
nodes and links are first-class objects with prototype-
based inheritance. Nodes can vary in size from a
single letter to a multi-page document, with most

rationale nodes corresponding to individual words,
sentences, or paragraphs. The Hyper-Object Sub-
strate (HOS) [18] is another hypermedia prototype. It
includes a generic view containing an argumentation
structure, which uses a piece of the design and
nearby discussion as an example in this structure.

4.3. Design Space Analysis

Design space analysisplaces an artifact in the space
of possibilities and seeks to explain why the parti-
cular artifact was chosen from these possibilities.
The Question, Option and Criteria (QOC) [5] is one
semi-formal notation ofdesign space analysis, which
focuses on the three basic concepts indicated in



218 W. C. Regliet al.

its name. The QOC representation emphasises the
systematic development of a space of design options
structured by questions, which is different from the
IBIS-derived systems and PHI, whose purpose is to
capture the history of design deliberation. QOC
represents the design space using three components:
questions identify key issues for structuring the
space of alternatives;options provide possible
answers to thequestions; criteriaare the bases for
evaluating and choosing from among theoptions.

Figure 6 presents an example of design space
analysis for displaying a scroll bar. The rationale
representation in QOC is created along with the
descriptive representation (specification) or the arti-
fact itself (prototype). In aspects of innovation and
reuse, QOC has many advantages. It is relatively
easy for a maintainer to create a QOC to ‘reverse
engineer’ a part of a system and preserve it for
future use. QOC records the exploratory activity of
the design team, such as what alternatives were
considered and what choices were made and why.
QOC’s graphical argumentation notation lets team
users actively manage QOC recording during work,
and supports the transition from expression to docu-
mentation, from informal, incomplete, private ration-
ale to more formal, complete, and publicly intelli-
gible rationale [42].

The Design Rationale Authoring and Retrieval
System (DRARS) [29] is a system that uses a
variation of QOC [29]. Views, goals, alternatives,
claims, questions, answers and versions are the
DRARS system’s objects. The human user is respon-
sible for giving descriptive and useful names to
these objects.

Another way to record design rationale is by
describing how an artifact serves or satisfies
expected functionalities, using languages such as
Decision Rationale Language (DRL) [1] or Function

Fig. 6. A QOC representation of the design space for displaying scroll bar [5].

Representation (FR) [30]. DRL is an expressive
language which represents the space around
decisions, which can be maintained independently
or integrated with traditional design representation.
DRL was implemented in a system called SIBYL
[43]. and is being used to explore various kinds of
computational service over DRL structures.

Also related to QOC, [44] describes a language
called TED used to represent the reasoning behind
the implementation of particular features.

4.4. Functional Representations

Functional Representation (FR) [30], a represen-
tational scheme, describes how the device works (or
is intended to work). In the functional representation
scheme, design rationale is used as an account of
how the designed artifact serves or satisfies expected
functionality. One can use FR to capture thecausal
components of design rationale. FR takes a top-
down approach to represent a device: the overall
function is described first, and the behaviour of each
component is described in the context of this func-
tion. FR encodes the designer’s account of the causal
processes in the device that culminate in achieving
its functions. Tasks that design rationale should be
able to support are: control of distributed design
activity; reassessment of device functions; generation
of diagnostic knowledge; simulation and design veri-
fication; redesign; and case-based design. FR pro-
vides a partial rationale for choices made about
components and their configuration; its limitation is
that FR only captures the causal knowledge about
device operation.

The Structure, Behaviour and Function (SBF)
model [37] is an approach for designing devices
which explicitly represents thefunctions of the



219A Survey of Design Rationale Systems

device (the problem), thestructure of the device
(the solution) and the internal causalbehavioursof
the device. Function can be defined aswhat (an
object) does, behaviour ashow (it) does what(it)
does, and structure aswhat (an object) is. For
example, a clock’s function is to indicate to an
observer the time, its behaviour is that its hands go
around with a periodicity matching the elapsing of
time, and its structure is its composition of metal,
plastic, glass, and so forth [45]. The structure of a
device in the SBF language is represented as a
schema that specifies the input behavioural state of
the device. The SBF model of a device also specifies
the internal causal behaviours that compose the func-
tions of device substructures into the functions of
the device as a whole. The functional models rep-
resent design casesfrom which adaptation spaces
are generated for solving a new design problems.
The designed products are represented using qualitat-
ive models with the structure and behaviour of
the artifact.

SBF models provide a powerful solution for adap-
tation problems and for performing case-based and
variational design [46], in which old design cases are
adapted to address new design challenges. KRITIK
[37,47] is a system which uses a functional represen-
tation scheme called Environmentally-bound Structure-
Behaviour-Function (EBSF) to represent and organ-
ise knowledge of the functioning of a device, includ-
ing the role of its environmental interactions.

Rosenman [6] clarified the concepts ofpurpose,
function, behaviour and structure. Purpose is the
action or fact of intending or meaning to do some-
thing; function is ‘the action of performing’, ‘the
mode of action by which it fulfills its purpose’:
behaviour is defined as how something acts in
response to its environment; and structure is the
organisation of the constituents of the object. The
relationship between them is: structureexhibits
behavioureffectsfunction enablespurpose: or, pur-
pose enabled-by function achieved-by behaviour
exhibited-bystructure. The process of interpreting
required behaviour to arrive at a given structure is
the process of analysis, the interpretation of structure
to determine behaviour and function is the process
of synthesis. These processes are causative processes
within the physical environment. The process of
interpreting function for purpose is the process of
realisation (of possible utility), whereas the process
of interpreting required purposes as desired functions
is a process of problem formulation. These latter
two processes provide the communication between
the human value system and the physical environ-
ment, and teleological reasoning comes into play.

Purpose, function, behaviour and structure are gener-
ally decomposed down to sub-functions, sub-behav-
iours and sub-structures, so the problem is formu-
lated by the relationship among groups of related
functions, groups of related behaviours and groups
of related structure (see Fig. 7). Such a represen-
tation can be easily mapped to a relational database,
with each predicate being mapped to a table in the
Relational Database System (RDBMS), or into an
object-oriented database, which has better capabili-
ties of handling class-subclass relationships.

4.5. Other Representation Schema

In each different engineering domain, from mechan-
ical design to software design, the design process has
its own unique features. According to the specific
requirements, various support systems have been
developed. One major challenge for software engin-
eers is judging how a change in one software module
effects (and is affected by) the rest of the design.
Mark [23] introduced the Comet system, which uses
explicit representation and reasoning with commit-
ments to aid the software engineering and develop-
ment process. The design knowledge managed by
Comet is in the form ofmodule descriptions: struc-
ture and behaviour specifications of modules inter-
related by commitment constraints. The underlying
representation is LOOM [48], a language and
environment for knowledge representation and
reasoning. LOOM maintains a taxonomy of module
descriptions based on the defined inter-relationship
of their constituent terms, and can automatically
determine modules’ relationships. Developers and
software engineers can examine the commitments

Fig. 7. Whole-component decomposition [6].



220 W. C. Regliet al.

that must be met in order to include an existing
module, and can explore how commitments change
when modules are modified. Comet has been applied
to the domain of sensor-based tracker software [23].

Augmenting Design Documentation (ADD) [24]
is an integrated computational model for assisting
designers in documenting projects at design time.
The model was developed based on observations of
designers developing Heating. Ventilation and Air
Conditioning (HVAC) systems and on observations
of documentation users accessing design documents.
The ADD [24] model represents design rationale as
a combination of argumentation-based and model-
based rationale, and is good at both rationale acqui-
sition and explanation. It works by documenting the
complete design decision path associated with the
artifact, as well as the rationale behind each decision
presented by the user. This solution path represents
the designers’ strategy, in which each node is a
sequentially linked decision. Users can explore the
design rationale in several ways: through the history
tree, the dependency tree, annotations, and (most
importantly) by asking direct questions. However,
the ADD system only provides a one-paragraph
answer, without references to the relevant data in
the knowledge base.

More recently, Garcia proposed a system, called
ADD1 [27], which includesrhetorical structuresin
active documents. ADD1 uses the same basic model
as ADD, but improves the system’s interactions with
the user. In ADD1, the wealth of knowledge kept
in ADD’s knowledge base is organised into high-
level Rhetorical Structure Theory(RST) [49]
schema, and mapped onto input and output screen
configurations that gear the interaction between sys-
tems and users. Compared with ADD, ADD1 has
an explicit communicative model to convey mess-
ages that reinforce the model’s usability.

Garza [28] discussed a design rationale system, a
path-finder computer program called Design Ration-
ale for the Information phase of Value Engineering
(DRIVE), used as part of a much larger Computer-
Aided Value Engineering (CAVE) system. It con-
sists of two modules: a domain-dependent Knowl-
edge Representation Module (KRM), which contains
objects and attributes representing building design
information, and a domain-independent Rationale
Storage Module (RSM), which contains all the
design decisions made about the different perform-
ance parameters of various design objects in the
KRM. The depends-onand has-relationshipseman-
tic net [50] links of of RSM generates the Parameter
Dependency Network, which can determine how the
designers arrived at a particular design decision. It

also can determine how one object-parameter affects
other object-parameters and further affect other
object-parameters.

Figure 8 shows an example of the PDN. The
Room-Function object-parameter pair affects the
Room-Fire Resistance Ratingobject-parameter pair,
which in turn affects theDoor-Fire Resistance Rat-
ing, Wall-Fire Resistance Ratingand HVAC Equip-
ment-Fire Resistance Ratingobject-parameter pairs.
It uses Kappa-PC (an object-oriented expert system
prototyping environment and AutoCAD (a graphical
computer-aided design application). Compositional
modelling is one other approach that has been
tried [51,36].

5. Design Rationale Capture

How design rationale is captured is a critical element
in the development of a design rationale system:
capture too little information (or the wrong
information), and it will be impossible to create a
representation of rationale; capture information too
intrusively and designers will not use the system.
The primary requirement of the design knowledge
capture process is that it captures design descriptions
in a form that supports the communication and reuse
of design knowledge. In particular, these capture
tools should operate on representations that are use-
ful for constructing design rationale explanations [4].

From the designer’s point of view, we can divide
design rationale capture methods into two categories:
those that requireuser-intervention, in which the
designer must manually record the design infor-
mation during the design process, and those that
are automatic, in which the capture is performed
automatically by the design rationale system.

5.1. User-Intervention-Based Capture

User-intervention-based rationale capture has often
been approached by thedocumentation method.
Documentation is intended to record the history of
design activities. More specifically, it records what
decisions designers made, when they were made,
who made them and why [18].

The form of documentation is areport, which is
written by individual designers. The creation of
documentation tends to occur after the decision pro-
cesses. Documentation therefore merely records
decisions, without influencing the designer’s thinking
processes leading to the decisions. Documentation
has some very useful functions [18]: it enables



221A Survey of Design Rationale Systems

Fig. 8. Parameter dependency network example [28].

people outside the project group to understand, or
supervise, the design process; and it can be used to
identify the intellectual property generated in a pro-
ject for the purpose of obtaining or defending pat-
ents.

Conklin [3] claimed that the documentation
approach to rationale capture has the following
drawbacks:

I documentation requires manually writing down
a design rationale, which is not executable or
even implementable;

I as documentation, a set of decisions is inherently
unstable, especially if it is being written during
an exploratory process;

I in order to be updated, the design rationale docu-
ment can grow into a huge bundle. In this case,
there are many people involved in the develop-
ment process, and issues may be repeatedly
recorded, which may result in inconsistent infor-
mation in the design rationale document;

I design is often marked by breakthroughs of under-
standing, after which some previous decisions and
assumptions may become incorrect or irrelevant
after conceptual restructuring. When this happens,
the design rationale document must be rewritten.

Most of the design rationale systems are using
mechanisms that let designers provide their own
expressions about design decisions and reasoning
during the design process. The REMAP model [25]
supports the capture of design rationale knowledge
by providing a mechanism for the design team to
conduct deliberations using the primitives (issues,
positions and arguments) in the model. As intro-
duced in Section 4.1, all these primitives are defined
manually by the designers during the design process.

The Comet system [23] uses explicit represen-

tation and reasoning with commitments to aid
software design. In terms of rationale capture, it
requires the user to introduce new module descrip-
tions as specialisations of existing module descrip-
tions, which limits the design flexibility. However,
a crucial area in which Comet is particularly useful
is through its Design Memory window, which allows
developers to trace the compatibility of the candidate
modules with the current design. This notion is very
important to the computational tractibility of the
system’s reasoning process.

In Garcia’s [24] ADD system for HVAC, rationale
is captured by using the computer as a ‘designer’s
apprentice’. ADD contains a predefined set of
relationship between the various design parameters.
These relationships allow the system to expect cer-
tain values for the design parameters. If the designer
proposes a value different from the expected value,
the computer asks the designer for justification
regarding the differences. The justification is input
by the designer and recorded in the system’s data-
base.

DRIVE [28], compared with ADD, has a fixed
and predefined set of relationships between its vari-
ous model parameters. DRIVE builds relationships
between its various model parameters in real-time,
i.e. as the design develops. It helps designers express
the rationale behind their design decisions in a
computer-interpretable format. It also assists value
engineers in formulating suitable design alternatives
by presenting rationale about an existing design.
However, the disadvantage of DRIVE is that it starts
out with a totally empty rationale database and relies
on the designers to create relationships among its
various object-parameters. In contrast, ADD starts
with a predefined but modifiable set of rationale
information. ADD captures additional design ration-



222 W. C. Regliet al.

ale when an expected value provided by the original
rationale database differs from the current state of
design. In other words, DRIVE needs user-inter-
vention even though it is more flexible in terms of
defining parameter dependency relationships.

KBDS-IBIS [14] introduced two new ideas. The
first was to enable the designer to record a variety
of complementary types of documents within the
process design history, addressing the goal of
improving the design information recorded. Design
rationale is recorded in KBDS using an extension
of IBIS structures. Secondly to extend the range of
information recorded, KBDS allows the designer to
annotate or associate a number of documents of
different types to unit operations in a process flow-
sheet or to notes within an IBIS structure. The
quality of design support depends on the quality
and quantity of the design history records. It is
necessary to have a full and accurate description of
the design artifact on which to base the argumen-
tation for design decisions.

Even though some design rationale systems need
user-intervention to record design information, a sys-
tem must naturally support the design process or
engineers will find the use of the system a distrac-
tion. Chung’s [31] IDIS has three main components
for supporting natural capture of design rationale
during the design process: aviewpoint system, an
issue-based system, and a rule-based system. IDIS
provides an integrated framework for recording three
different aspects of design rationale:exploration of
design alternatives, reasons for design decisionsand
design constraints. Recording the possible solutions
and the argumentation explicitly helps other design-
ers avoid considering the same unfruitful areas in
the future, and can be useful in checking designs.
By recording the design constraints as decisions are
made, if changes are made to the design, the system
can help designers check the design for violations
of these constraints.

5.2. Automatic Rationale Capture

The automatic capture of design rationale assumes
there is a method to capture the communication
among the designers and design teams. The com-
munication records can then be used to extract
design rationale and decisions as they evolve during
the design process [18]. Usually, communication
employs Computer-Supported Co-operative Work
Tools (CSCW) [52] or meeting technologies. This
includes, for example, telephone, tape recorders,
video camera, shared applications, or e-mail to cap-

ture oral discussions as well as writings and draw-
ings exchanged between designers. The designers
need not do anything more than pursue their usual
design activities. When communications and meet-
ings are archived digitally, design activities can be
processed and design rationale determined.

One drawback is that what is recorded during
communication and collaboration is likely to be free
form, full of disorder and digressions [18]. Raw
communication lacks structure; by using this
approach to capture design information, the knowl-
edge retrieval process may be ineffective as a result.
While difficult to extract meaning from, the capture
of raw CSCW sessions and project meetings is the
most convenient approach for the raw archiving of
design rationale.

The HOS system [18] provides an environment
supporting computer network design with the combi-
nation of natural communication and design in an
argumentation structure. HOS includes facilities for
importing email and USENET/Internet news files –
thus, the network designers can continue their exist-
ing practice of using e-mail to inform one another
on the progress of tasks, and later include this
information in their HOS design space. This design
information capture process is done automatically
by the HOS.

PHIDIAS’s [18] integral, graph-based architecture
facilitates relating the semi-formal knowledge con-
tained in design rationale with more formal system
knowledge. It implements this capture process in
two steps. The first is by representing all of its
knowledge, including semi-formal rationale as well
as formal representations of physical objects, facts,
and rules, in a common graph-based format. The
second step is simply using hyper-links to intercon-
nect knowledge items, regardless of their level of
formality.

Ramesh [26] suggested that an ideal design ration-
ale system should not only facilitate easy and non-
intrusive capture, but also provide automated reason-
ing with related knowledge. Ramesh implemented a
multimedia extension based on the REMAP model,
called REMAP/MM, which is a prototype Decision
Support System (DSS) environment that supports
capture by providing a graphical interface for design
teams to conduct their deliberations. It also supports
hyperlinks among design deliberation records and
multimedia objects. REMAP/MM explicitly ident-
ifies the dependencies among design rationale; when
design is reviewed, dependency information can be
used to identify relevant components of the process.

Fischer’s [16] CRACK kitchen design environ-
ment consists of two components: a domain-oriented



223A Survey of Design Rationale Systems

construction kit for creating a kitchen floor plan
layout and a knowledge-based critic for evaluation.
The construction kit in CRACK is provided to give
the designer the feeling of directly generating the
design without the computer’s being ‘in the way’.
The important abstract operations and objects in the
kitchen design domain have already been built into
the CRACK construction kit. Therefore, the design
rationale used during the design is captured auto-
matically by the system.

JANUS’s [21] architectural design system inte-
grates a CAD-like editor with a rule-based design
critic and an argumentation-structured hypertext
documentation environment; it is an integration of
the CRACK and VIEWPOINTS systems. The
JANUS system has demonstrated that hypertext can
be used in conjunction with knowledge-based design
environment to ease design knowledge capture.

An experimental system, the Rationale Construc-
tion Framework (RCF) [32] was designed to acquire
rationale information from the detailed design pro-
cess without disrupting a designer’s normal activi-
ties. The underlying approach involves monitoring
designer interactions with a commercial CAD tool
to produce a rich process history. This history is
subsequently structured and interpreted relative to a
background theory of design metaphors that enable
explanation of certain aspects of the design process.

Generic task model of design. DEsign and Specifi-
cation of Interaction REasoning components
(DESIRE) is a formal framework for multi-agent
systems [53,51]. It explicitly models five types of
knowledge: the task composition, the knowledge
structure involved, information exchange between
tasks, sequencing of (sub)tasks and goals, and the
roles of the participating agents. It has been used for
management of conflicts in design [53], (parametric)
design of elevators [51]. Generic Task Model of
Design (GTMD) [36] is one of the generic models
available within DESIRE. GTMD is used to struc-
ture the acquisition process, clearly distinguishing
the design tasks into three subtasks: reasoning about
requirements and preferences (RQS); reasoning
about the Design Object Description (DOD); and
reasoning about (coordination of) the overall design
process. Each of these three are composed of four
subtasks: modification, update-of-modification his-
tory, deductive refinement, and update of current
description. Knowledge used to generate design
rationale is represented in the components of the
GTMD. During the design process, the design
rationale is generated and stored in the respective
history components. Different types of design ration-

ale are distinguished according to the functional role
they play in the design process. GTMD has been
used to structure the modelling process of an
example aircraft design task [36] and an elevator
design task [51].

Interactive Acquisition of Justifications. Justifications
explain why something should be believed or done.
Gruber [54] proposed an approach for acquiring
justifications by transforming why-questions into
what-questions. It changes the open-ended task of
explaining why into the constrained task of selecting
what is relevant. The author framed the problem of
capturing design rationale as a knowledge acqui-
sition problem, where the task is to elicit, from
domain specialists (designers), knowledge that
enables a program to generate explanations of how
the designed artifact is intended to achieve its func-
tion. The ASK knowledge acquisition system was
proposed. It first elicits an example specifying a
situation and a choice; the user provides the example
by running the interactive knowledge system until
it comes to an interesting choice among actions.
The user interrupts the knowledge system, and indi-
cates which action the user would have taken in the
situation and an example of an action that would
not have been appropriate (the negative example).
It then elicits justifications for the strategic decision,
that is, reasons for choosing one action over another.
The interface presents features of the current situ-
ation, and users select from among these features a
set of relevant features for choosing the positive
example. ASK computes the values of the specified
features for the current state and the positive and
negative actions, and presents these object-feature-
value tuples as English sentences that are intended
to explain why the chosen action is appropriate.

Capture of device behaviours. Stahovich [55,56]
described a program called SketchIT that captures
the behaviour of the device in a single sketch,
represents them inqualitative configuration space
(qc-space), and then synthesises them into multiple
families of new designs. The input of SketchIT is
a stylised sketch of a device and a state transition
diagram describing the device’s desired overall
behaviour. The latter provides guidance in ident-
ifying what behaviour the individual parts of the
device should provide. The overall behaviour of the
device is achieved through a sequence of interactions
between pairs of engagement faces, hence the behav-
iour of the device is captured and represented first
by configuration space curves (cs-curves), which are
formed by touched points of engaged surfaces in



224 W. C. Regliet al.

configuration space (c-space). The axes of a c-
space are the position parameters of the bodies; the
dimension of the c-space for a set of bodies is the
number of degrees of freedom of the set. The
numerical cs-curve is further abstracted into a quali-
tative c-space, which represents cs-curves by their
qualitative slopes and the locations of the curves
relative to one another. In the synthesis process, the
program turns each of the working qc-spaces into
multiple families of new designs represented by a
BEP-Model (Behaviour Ensuring Parametric Model).
The synthesis process is comprised of two steps:
selecting a motion type for each part and selecting
a geometry for each pair of engagement faces. There
are a variety of selections of motion type and
geometry which are different from those of the
original sketch, but have the same behaviour
described by the working qc-spaces. This variety
leads to a family of new designs which have the
same function as that of the original sketch.

6. Design Rationale Retrieval

The reuse of design rationale is realised by its
successful retrieval. In this context, design rationale
research shares much in common with research in
case-based reasoning and case-based/variational
design. Case-based reasoning has been an active
research area for the past 15 years [57–60]. This
work represents a foundation of structures, algor-
ithms and techniques for reasoning about and adapt-
ing archived knowledge.

Design rationale systems operate in a similar man-
ner, retrieving past experience relevant to solving a
new problem. Which cases are retrieved depends
upon both the current objectives and the represen-
tation schema of the design rationale. There are
different potential scenarios for retrieving design
rationale: (1) to view similar design cases at the
initial conceptual phase of design; (2) to retrieve
criteria, rules and options to help make design
decisions during the design process; or (3) to pro-
duce documents after a design process. Depending
on the scenario, there are different strategies to
retrieving related design rationale and avoiding
unwanted material [14,27].

Lee [12] classified design rationale systems as
user-initiative or system-initiative, depending on
whether the user or the system initiates access. We
consider the retrieval strategies of design rationale
systems by considering their support of three basic
retrieval approaches: navigating by designers,

retrieval by queries, and automatic triggering during
the design process.

6.1. Navigating Archived Design Rationale

Design rationale navigation involves permitting
designers to explore design rationale by traversing
from one node to another by existing links. Systems
may provide facilities to help with such navigation
[41]. For process-oriented approaches, this navi-
gation often provides a backtracking of the design
history. In a feature-oriented approach, with design
knowledge being stored according to features of the
designed artifact, navigation is done around the fea-
ture structure. For a complex artifact, a large quan-
tity of information is recorded during the design
process – looking up specific answers is often a
difficult task.

The VIEWPOINTS [41] system uses PHI and
extends IBIS by broadening the scope of the con-
cepts of issues, answers, arguments and graphics, to
aid designers in finding answers to specific prob-
lems. VIEWPOINTS creates an integrated multifa-
ceted design environment with five components: a
construction kit, an argumentative hypertext system,
a cataloguewith a collection of design examples, a
specification componentand asimulation component
for exploring the design options. VIEWPOINTS is
used as a look-up manual, where designers can find
answers to specific problems and consider various
arguments for and against them. For a complex
problem, the discussion around it may be distributed
in a wide range of archived activities. To navigate
through all the related nodes and to make sense of
it becomes a difficult task.

An IBIS-style browser [22] lets users browse
design rationale as a map with nodes such as issues,
positions and arguments, and links such as responds
to, supports and objects. As a system combining
issue-based and truth-maintenance approaches, it
helps designers perform what-if analysis using colors
to indicate the belief status of nodes.

ADD [24] proposed a read-only interface to allow
users to navigate graphically through the decisions
and reasonings connected to the designed artifact.
ADD also allowed users to verify the knowledge
required for justifying each decision, thus leading
to retrieval of an intelligent design document. A
controller contained domain knowledge for checking
designers’ decisions.

COMET [23], the software design support system
for Computer-Aided Software Engineering, allows
software developers to review and check any exist-



225A Survey of Design Rationale Systems

ing module descriptions in the Comet knowledge-
base that are consistent with the descriptions created
for a new module. There is a design memory win-
dow with a nodes-link diagram to help users with
navigation.

In IDIS [31], listing and browsing facilities are
provided by AutoCAD diagrams and the viewpoint
linked to them. By clicking an item on an AutoCAD
diagram, the specification of that item will be dis-
played, and users can find out all the issues and
rules related to it by visiting the viewpoint and its
parents and children. It also provides some sup-
plemental facilities to support keeping track of
design progress, and for reviewing a project when
it is completed. It provides an option for listing
unseen nodes in the issue base to answer the ques-
tion ‘what is new’ in the design process, and an
option for listing the outstanding issues and their
corresponding deadlines to answer the question
‘what are the outstanding issues’. Users can treat
the issue system as a database of free text, so a
keyword search could be used to find out ‘what has
been said about a certain topic’; it can display all
the relevant issues that led a particular design alter-
native to answer ‘how did we get here’. To answer
the question ‘what are the differences between two
design alternatives’, it can provide a summary of
the viewpoints leading to the different design alter-
natives, process units that are in one design and not
in another, and different parameter values associated
with the same items in different designs.

6.2. Automatic Triggering

Several design rationale systems enable the capturing
of design rationale by automatic triggers that
detecting or monitor certain conditions according to
the design context. This type of approach shares
many similarities with the event-driven programming
paradigm in the engineering of real-time and inter-
active software systems. Design conditions are moni-
tored according to corresponding rules, criteria or
constraints of design. The monitor is used to look
over and check the design process, and compare the
decisions made with the constraints, rules or criteria
in a design rationale library or knowledge base; if
differences are detected, the design rationale will be
retrieved automatically.

The PHIDIAS [18] system uses issue-based
indexing of design rationale as its hypertext-based
retrieval strategy. The basic idea is to connect the
design rationale with the design task. The connection
is artifact-based indexing, which connects design

rationale to the drawing of the artifact, critique-
based indexing, which connects the critique to the
design task, and operation-based indexing, which
connects the design rationale to some specific oper-
ations on the designed artifact. Critics have been
built according to the indexing scheme, which can
be specified to be triggered automatically depending
on design conditions or which may be requested to
be executed by users.

CRACK [21] is a knowledge-based computer sup-
port system which can help designers solve construc-
tive design problems in design activities. The critics
in CRACK are intelligent support systems which
detect and criticize partial solutions constructed by
the designer based on knowledge of design prin-
ciples. A critic can be triggered by state-driven
condition-action rules, because it checks the knowledge
-base to detect non-satisfying design decision [16].

ADD1 [27] acts as an apprentice and learns
about the features that make a specific case different
from the standard in the design process. The appren-
tice must be able to access the design knowledge
so that a new design decision can be justified.

6.3. Query-Based Retrieval

To provide retrieval strategies according to design-
ers’ queries is more efficient than browsing the
nodes of design rationale structures. The queries
may be ‘what-if’ questions, which can be answered
by exploring different options; or ‘why’ questions,
which are answered by back-tracking in the network
of nodes and links to find out the argumentation or
reasoning behind a decision. Gruber [54] proposed
a generative approach, in which design rationale
explanations are generated in response to infor-
mation requests from background knowledge and
relevant information captured during design. The
problem is how to provide a methodology of sel-
ecting and assembling knowledge from libraries of
design rationale based on specifications of require-
ments [61].

REMAP/MM [26] uses a deductive query langu-
age to define various types of ad hoc queries, and
provides a graphical interface for displaying queries
and retrieving desired information. The queries may
be recursive, which supports selective retrieval of
process knowledge, allowing the design process to
be replayed. Instead of replaying the entire process,
dependency information can be used to identify
relevant components of the process that need to
be replayed. REMAP/MM made extensive use of
multimedia and a combination of both informal and



226 W. C. Regliet al.

formal representation to capture design rationale
[26].

KRITIK [30,9] (Kritik in Sanskrit roughly means
‘designer’) is an early case-based design system. It
uses a Structure-Behaviour-Function (SBF) model to
explain how the structure of a device accomplishes
its function, which is part of design rationale in
showing why and how designers get the device to
work as intended. The system searches the corre-
sponding Causal Process Description (CPD), and
follows state transitions to retrieve the desired
knowledge.

DRIVE [28] is a rule-based system in which the
captured design rationale has structure, and can be
processed automatically by the system. It creates a
rule base for all rationale hierarchy objects which
is used to check the validity of the relationships
every time a relevant design parameter changes, or
to detect conflict and provide designers with various
options for resolution.

6.4. Hybrid Retrieval Strategies

JANUS [21] uses the critics from CRACK to moni-
tor the design process based on a knowledge base,
and allows entering from a criticism point to the
exact place in the hypertext network where the
argumentation relevant to the current construction
task lies. A Document Examiner provides func-
tionality for on-line presentation and browsing of
the issue base by users.

KBDS-IBIS [14] provides three ways in which
design rationale can be used to the designer’s advan-
tage: dependency-directed backtracking, automatic
evaluation of positionand automatic report gener-
ation. All three need to review the design rationale
according to certain requirements. To provide sup-
port in design requires prescriptive information to
determine the validity of the argumentation stored
within KBDS-IBIS, so it is more than just retrieval
of what has been recorded.

7. Related Research Areas Supporting
Design Rationale

Engineering design theory. Engineering design is
the process of creating new products, processes,
software and systems from an initial, incomplete
and general set of goals, objectives, functional
requirements and constraints, with the consideration
of social and economic impacts pertaining to the
use of product being designed. In general, engineer-

ing design involves the following four distinct
aspects: problem definition, conceptualisation,
synthesis/analysisand detail design.

Axiomatic design theory [62] is one of the suc-
cessful methodologies used in the design field. It
defines a design as the creation of the synthesised
solutions that satisfy perceived needs through the
mapping of theFunctional Requirements(FRs) to
the physical space, represented byDesign Para-
meters(DPs) as shown in Fig. 9. Functional require-
ments are the minimum set of independent functions
constructed to satisfy the design original needs. The
design parameters are specified to satisfy the func-
tional requirements.

Intelligent CAD. While CAD systems provide
increasing levels of functionality to support the
design process, they deal predominantly with
detailed design. CAD systems are drafting and
detailed modelling environments, performing best
when users know what the design’s physical form
will be [63].

There have been a number of different approaches
enabling intelligent CAD. Case-based and Vari-
ational Designenvironments enable previous design
cases to be adapted to solve new problems [9,46,64].
Research in this area has built symbolic represen-
tations for indexing and retrieval of design cases.

Ullman [10] presents a detailed analysis of audio
protocols used by five mechanical designers, observ-
ing that CAD tools should be designed to give
cognitive support to the designer. He argues design
rationale systems, combined with CAD systems, will
provide a more complete toolbox to give better
support for decision making at the initial design
stage. A more recent project [65] examines com-
munication among application programs in the
Architecture, Engineering and Construction (AEC)

Fig. 9. Mapping process by axiomatic design.



227A Survey of Design Rationale Systems

domain. Internet-based project collaboration products
are integrated with the AEC desktop, enabling a
better understanding among team members in a
design process. In this project, the commercial CAD
tool is used to monitor designer interactions.

Klein [7] indicated that to achieve the benefits of
using design rationale, representations must allow
designers to express their design reasoning in a
natural way. At the same time, these representations
must be formal enough to support useful compu-
tational services and impose the minimum possible
overhead on the design process. His Design Ration-
ale Capturing System (DRCS) provides an integrated
and generic framework for capturing rationale in
team contexts. DRCS uses a vocabulary of assertions
to capture design reasoning. The assertions consist
of entities (e.g. modules, tasks, specifications and
versions) and claims about these entities. The
vocabulary of claims and entities that make up the
DRCS rationale language fall into five categories:
synthesisto capture the actions used to define arti-
facts and their plans;evaluationto capture not only
design specifications but also how well they have
been achieved;intent to capture when a designer
takes an action;versionsto capture how the designer
creates and explores the space of design alternatives;
and argumentation to capture the reasons for or
against an action. DRCS was implemented in Com-
mon Lisp on Symbolics workstations.

Knowledge representation. The artificial intelligence
community has produced a rich set of techniques for
formal representation of knowledge [66–70,50,71].
Many of these techniques build on formal logics,
and are often difficult to adapt to ill-defined and
often informal engineering datatypes. This includes
work on functional representation [30,72] and the
creation of engineering ontologies [73–77]. There

Fig. 10. DRCS architecture.

have been a number of successful efforts from the
engineering community to apply formal AI represen-
tations to design and manufacturing problems [78–
83,40,84].

Knowledge-based design support. To model
knowledge-bases and databases for intelligent
design, design rationale must be captured and trans-
lated into these formalisms [85]. Many knowledge-
based systems have been developed for design; sev-
eral most relevant to design rationale systems
include [15,14,31,86].

Gruber [87] analyses the role that a standard
knowledge representation language can play in the
sharing of Knowledge Bases (KB) among groups of
people and programs that can make use of the
knowledge and across research groups developing
knowledge-based technology. Other work from Stan-
ford on the DARPA MADE Program [88–92]
repeatedly addressed knowledge sharing and knowl-
edge representation as central issues in deploying
collaborative engineering systems.

In a knowledge-based design system for concep-
tual design in chemical engineering [15,14], four
inter-related networks are used to represent design
process, and design rationale is represented using
an extension of IBIS. IDIS (Integrated Design Infor-
mation System) [31] is an issue-based system that
supports the argumentation process during design;
viewpoints are used to represent the design hierarchy
and to support design exploration, and a rule-based
system is used to represent design constraints.
Knowledge can be represented in the expert system
at different levels: theknowledge-usedlevel is used
90% of the time, while theknowledge levelis used
to support the knowledge-used level [86].

For a comprehensive text on the subject of knowl-
edge-based systems in design, readers are referred
to the recent book by Sriram [93,94].

Machine learning.The research work in the area of
machine learning has contributed many methods that
have been applied to the acquisition of knowledge
in design. Machine Learning in Design (MLinD)
[95,96] examines the similarities between machine
learning and design rationale capture. The main
elements in machine learning are the input of knowl-
edge, the output of knowledge, the transformation
of knowledge, the learning triggers and the learning
goals which are related to the record, the access,
the construction, the capture and trigger of design
rationale. The approaches of machine learning are
basically analogical reasoning [97], induction-based



228 W. C. Regliet al.

[98], knowledge compilation [99] and neural net-
works [98,100–102].

8. Other Applications of Design
Rationale Systems

Design rationale systems enable a wide variety of
other forms of knowledge reuse. For example,
rationale environments can record not only the
design decision, but also its justifications and the
other design alternatives, trade-offs, and the argu-
mentation that led to the decision. We present sev-
eral other uses of design rationale environments.

Explanation, prediction and conflict management.
Rationale systems can be used to provide justifi-
cation for particular decisions [36]. In this way,
people can understand which combinations of
requirements and preferences designers have pre-
viously considered, which options and which partial
designs were explored, and in which situation. They
also can know the argumentation for the rejection
and/or acceptance of options, choices and partial
designs. Further, archives can help determine if
specific design decisions were made previously in
similar situations, using the results of past experi-
ence to help designers predict the probability of
success for the new design problems [27]. Rationale
systems have also been used to mitigate conflicts
among design team members [36,15,18].

Design indexing, navigation and reuse.By associat-
ing formal representations of design rationale with
their relevant design tasks, design experience can
be retrieved. Such indexing is especially valuable
when rationale needs to be rediscovered, reused or
re-evaluated. The indexing can be issue-based, task-
based, artifact-based, critique-based or operation-
based [15,18,103,104].

Design rationale-based indexing can also be used
to discover if parts of requirement descriptions, or
object descriptions for past design cases can be
reused for new design problems [36,105]. Some
current research has focused on the role design
rationale can play in redesign systems [105].

Design documentation. Rationale capture systems
provide a form of design documentation, recording
what decisions are made, when they are made, who
made them and why. This documentation enables
people outside the project team to understand, super-
vise and regulate what is done by the project team.
Another use of this documentation is to identify

and secure intellectual property generated during a
project [18,27,15,105]

Tazi [106] proposed to use design rationale for
the documentation of complex engineering systems.
Intricate, multi-disciplinary design problems have
numerous quantities and qualities of information,
correspondingly complex document structures, and
many intended users (such as engineers, technical
writers, editors, graphics specialists and formatters)
involved in the production of the product and its
documentation. In the case of the documentation of
a complex system (e.g. an aircraft or large software
system), the authors need to be able to include not
only the information content derived from the
design, but also communicative intentions – the
traces of various design choices by the designers
and the authors.

Design rationale as a learning aid.Carey [107]
proposed to develop a library of exemplar artifacts
and design rationales as a Human-Computer Interac-
tion (HCI) learning aid, to help train inexperienced
graphical user-interface designers. For designers
(both in training and on the job) the study of GUI
designs is hindered by the lack of explicit rationales
to explain how the design achieves its objectives,
and why other alternatives were deemed less attract-
ive. A prototype system built as an extension to a
commercial user-interface toolkit showed that gen-
eric design rationale components could guide inex-
perienced designers.

Construction of design models.Design is viewed as
a process of constructing and evaluating a succession
of increasingly complete design models until a final
design is produced. Templates [108] have been used
to guide the development of useful parts of design
rationale by creating an instantiation of an existing
template, and supporting the design that evolves as
a sequence of models towards a final result. Three
kinds of templates are introduced [108] which sup-
port software user interfacedevelopment, estab-
lishing design goalsand design process manage-
ment.

9. Discussion

This survey has discussed design rationale systems
from five perspectives:knowledge representation,
rationale capture, rationale retrieval, technical
approach and application domain. While consider-
able effort has been put into developing design
rationale systems, none of these systems has been



229A Survey of Design Rationale Systems

adopted for widespread industrial use. Although
designers can benefit by using design rationale sys-
tems, most systems are still in the laboratory stage.
Further research needs to focus on the advancements
needed to take the science to the level at which it
can be effectively deployed in industry.

9.1. Representational Challenges

The challenge of design rationale representation is
to find the best method to assist designers in making
decisions, which means this representation must pos-
sess three qualities:ease of input, effective viewand
activeness[3]. For current systems, there are still
some significant problems. For example, in IBIS-
based design rationale systems, arguments are rep-
resented as non-interpreted text – hence a system
cannot really understand the design, which jeopard-
ises the usefulness of the method [31,24].

There is a considerable amount of work needed in
design rationale representation. A system component
should be developed for articulating and representing
the task at hand, for example, how to create a
Design Space Analysis by using QOC representation
[41,5]. Design rationale systems should have the
capability to represent potentially relevant features
and combine features of objects in specific contexts
to form coherent explanations in justification elici-
tation [54], to explore the possibility of representing
more generic clauses in the formal components of
the rationales [109], and to encode the modeling
knowledge in a form that can be shared and reused
by several applications, i.e. the objective of
developing some representation formalisms for shar-
ing and reusing declarative knowledge [61].

For future systems, a formal language must be
developed to represent and reason about the state
of the design at all levels of abstraction [10]. Sys-
tems should have the ability to provide different
views, e.g. selectively hiding unnecessary detail and
reorganising the information according to different
criteria (such as subject, creator, status) rather than
only chronologically. For argumentation systems, an
issue is how to integrate authoring with browsing,
which would enable the designer to annotate the
issue base, record decisions on issues and generally
personalise the argumentation [14,21].

9.2. Capture Challenges

The basic concern is how to capture process knowl-
edge with minimal overhead, with the least inter-
ference with the natural progression of design activi-

ties. Most importantly, how can this be done without
shifting the focus of designers’ work from creative
design tasks to the more tedious documentation
tasks [27,26].

Other problems worth noting include how to
resolve the conflicts that arise when new knowledge
captured may violate the knowledge previously cap-
tured, and how to construct the new design rationale
and keep it consistent for later use [9]. These prob-
lems share issues in common with research from
mainstream AI in areas such as non-monotonic logic
and consistency management in knowledge-based
systems. For most design rationale systems, the
current implementation is only able to record the
design rationale after decisions are made, but not
while they are being made. Further work could
contribute to better tools for real-time capture and
processing of rationale [14]. The ideal would be to
have design rationale systems that can bridge the
gap between communication and argumentation by
structuring rationale after it has been captured [18,
21].

For the engineers themselves, some problems need
to be noticed. Considering the differences in the
preferred evaluation criteria used by different
designers, especially between experts and novices,
to develop formal languages to represent and reason
about the states of the design at all levels [10] is a
way to keep consistency in the capture and construc-
tion of design rationale [34].

9.3. Retrieval Challenges

Since process-oriented design rationale is organised
chronologically, research on retrieval strategies is
needed to manage the enormous amount of chrono-
logically organised design rationale [3] and increase
human usability and computational tractability [1].
Effective facilities need to be provided for users to
get required information without navigating through-
out the whole rationale space, such as by selectively
hiding unnecessary detail and reorganizing the infor-
mation [14,27].

To capture deliberations and reasonings in design
processes, it is sometimes desirable to provide a set
of predefined queries which address various known
user needs [25]. These queries can be configured
using the design rationale recorded for previous
designs or by extracting analogies from previous
design situations via case-based reasoning [14].



230 W. C. Regliet al.

9.4. New Approaches

To bridge the representation gulf between designer
and design rationale representation and strengthen
design rationale research, we need to modify the
language of communication (notation) and develop
the representation medium (tool support) [2].

From our survey, while there have been design
rationale systems and prototypes deployed in lab
settings, much effort is needed before they will find
widespread acceptance in industry [28]. To extend
the system to a wider range of tasks such as com-
missioning, maintenance, operational analysis and
planning, in any area where decisions are made, not
just in design process [14].

9.5. Conclusions

Organisations subsist on communication and coordi-
nation. Whether the organisation is a multi-national
conglomerate with a centuries-old history or school
children playing basketball at recess, success of the
organisation depends on the ability of its members
to communicate and co-ordinate. The promise of
design rationale systems is to address this need –
that is, to empower organisations to create and
manage their knowledge assets. However, despite
claims of the ‘great potential’ of design rationale
systems, demonstrated successes are rare.

Design rationale is not a new concept for organis-
ations. Organisations have long been concerned with
capturing and preserving their intellectual capital
[110]. However, the introduction of new techno-
logies and concepts can potentially change the way
in which knowledge must be managed. Currently,
much of the information generated within an organ-
isation is stored with the people in the organisation.
That is, information about procedures, goals, prac-
tices and history is stored in the people’s memory,
desk drawers and bulletin boards. For decades, this
informal method of managing information was,
although not ideal, generally adequate. However, as
artifacts increase in complexity the need to capture
the underlying design rationale increases. The goal
of design rationale systems is to alleviate this prob-
lem.

A successful solution to this problems is one that
facilitates the generation, storage and retrieval of
information and associates the information with the
designed artifact. Although that is the intent of
design rationale systems, the survey presented in
this paper shows that this intent is largely unmet.

In the sections below, we summarise the chal-

lenges that successful design rationale systems must
meet. We include design challenges which, we
believe, will be more difficult to overcome than the
technical challenges.

9.5.1. Technical Challenges
First, many systems require a large number of
knowledge workers to help organise and develop
the content. This presents a problem for organis-
ations with limited resources and a long list of
other priorities. These organisations need to take
advantage of intellectual capital [110] that is
developed as part of the work process. One such
example would be the communication and coordi-
nation of distributed work teams that many managers
are now required to do.

Secondly, even when the organisation as a whole
and individual groups are well supported, and con-
tent is generated without an unreasonable cost to
the organisation, another challenge arises. This chal-
lenge is in making members of the organisation
aware of all the relevant resources available to them.
This awareness mechanism must be based on each
individual’s needs. It must also give the individual
the freedom to tailor it to his/her preferences (e.g.
push versus pull, delivery frequency, and individual
interest profile).

Thirdly, design rationale technologies need to be
designed specifically to suit the needs of the organis-
ation in which they will be used [111]. It is virtually
impossible for systems to be reused from one organ-
isation to the next. Although platforms such as
Lotus Notes and other intranet platforms have helped
decrease the time it takes to develop individual
applications, it is difficult to find a reusable architec-
ture for a system which would support an entire
organisation. Reuse is made more difficult because
technology can only be introduced after work on
the organisational issues discussed above has been
initiated, and how these issues are resolved will
certainly reflect how technological solutions should
be designed.

9.5.2. Design Challenges
As Davenport and Prusak [112] warn in their book
‘if you build it, they may not come’. Being able to
build a system is only an initial step; the ‘gold
standard’ against which success is measured, how-
ever, is whether people will accept and use it. As
technologists, we did not have much control over
the personal reward systems of the individual users
and management mandate that many [112,111] rec-
ommend will enhance usage of the technology, and
therefore we could not motivate our users as such.



231A Survey of Design Rationale Systems

However, it has been shown that other factors are
also involved with designing and deploying such a
system that contribute to its success [113,111]. By
using a ‘human-centred’ approach [114,115], the
level of use will be strongly affected by the useful-
ness and usability of the system deployed.

Following Grudin’s suggestion [113], we need to
design systems so that there are identifiable benefits
to the people who use them. When an individual
uses a system, the benefit gained from this experi-
ence should encourage him to continue using the
system. We must strive to design systems in such
a way that there are benefits to the current users,
not just the future users. In doing so, the system will
have a better chance of sustaining continued use.

Design rationale tools must support both formal
and informal knowledge, making the system flexible
enough so that broad content types were supported
[114]. They must support multiple levels of organis-
ation of content and design systems so that knowl-
edge can be structured at any time after it is entered
[35]. We do not want to force the content to be
too structured, but need to provide structuring mech-
anisms so that it can be automatically structured or
restructured at a later time.

As Grudin suggested [113], it is best to build
upon an already successful application. The luck, of
course, is in finding such an application, and in
appropriately defining ‘successful’. Building on an
application that the user population is already fam-
iliar with reduces the overhead of learning to use a
new system. Providing a totally new application for
storing and retrieving information increases overhead
and correspondingly decreases the probability of a
successful system introduction.

Finally, builders of design rationale systems
should borrow ideas from the field of Participatory
Design [116]. Evolutionary Growth [117], the
Improvisational model [118], and the framework
specified in Zimmermann and Selvin [119]. Joint
design of a system with the intended users is much
more likely to succeed than designing for them.

9.5.3. A Final Comment
The need for design rationale is a common problem,
but successful design rationale systems are rare. The
need to record and preserve intellectual capital
drives organisations to manage knowledge. Our
objective in this paper is to provide present builders
of design rationale environments a guidebook into
the systems design and implementation issues.

We believe that, as the technological sophisti-
cation of both the needed software components and
systems integration tools increase, design rationale

capture and reuse may soon become more wide-
spread in business practice. We began this survey
by asking some questions, we conclude by offering
some tentative answers. The questions we sought to
answer are:

I If design rationale is useful, why are design
rationale systems not in widespread use in indus-
try?

I How can design rationale systems better support
engineering design?

I What are the major obstacles to the creation of
truly useful and usable design rationale systems?

In conducting this survey, we found many things
that surprised us. We expected to find many descrip-
tions of design rationale systems and few successful
applications in the ‘real world’; but we were sur-
prised that the number of descriptions was so large
and the number of applications was so small. This
finding underscores the importance of our initial
questions.

Looking across all the descriptions of design
rationale systems, we see many useful insights and
many good ideas. We summarise these insights and
ideas with respect to the four issues in our frame-
work: approaches, representation schema, capture
and retrieval. It is clear, for example, that there is
not one right approach to building design rationale
systems; a process-oriented approach fits better in a
dynamic design domain and a feature-oriented
approach fits better in a highly standardised design
domain. Similarly, there is not one right approach
to representation. A representational approach, for
example, would aid consistency of decision making
while a descriptive approach would aid reuse of
design components. Further, different representations
can be effectively combined in a single system.
Automatic capture of design rationale certainly
seems like the right goal, even though it will be a
hard one to achieve. We are less certain about
automatic retrieval. The idea is appealing, but find-
ing the boundary across which systems become
‘intrusive’ rather than ‘helpful’ will, we expect, be
a difficult problem.

We were also surprised at the breadth of literature
relevant to design rationale. Looking through our
reference list, you will find many citations to the
fields of engineering, computer science and software
engineering. Most readers, we expect, will not be
surprised to find these citations. Some readers may
be surprised, however, at the number of citations
to fields such as cognitive psychology, sociology,
business, management and human-computer interac-
tion. The breadth of citations underscores, for us,



232 W. C. Regliet al.

that design rationale is best viewed not as an inde-
pendent area of investigation, but as a subproblem
in the broader area of knowledge management. As
we indicated earlier in this section, the design ration-
ale community has much to learn from (and to
teach to) their colleagues in the broader knowledge
management community.

Our tentative answer to the three questions above
is that we know a great deal about approaches,
representation schema, capture, and retrieval of
information in design rationale systems. There are
many good ideas and insights in current systems
that should be able to be combined to make more
effective systems. The primary challenges that we
see are the technical challenges of organising and
managing knowledge and the design challenges of
using a human-centred approach to building useful
and usable systems.

Acknowledgements

This work was supported in part by National Science
Foundation (NSF), Knowledge and Distributed Intelligence
in the Information Age (KDI) Initiative Grant CISE/IIS-
9873005; CAREER Award CISE/IRIS-9733545 and Grants
ENG/DMI-9713718 and CISE/CDA-9729827. Additional
support was provided by The National Institute of Stan-
dards and Technology (NIST) Grant 60NANB7D0092 and
AT&T Labs.

Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s),
and do not necessarily reflect the views of the National
Science Foundation or the other supporting government
and corporate organisations.

References

1. Lee, J., Lai, K. (1991) What’s in design rationale.
Human-Comput. Interaction, 6(3–4), 251–280

2. Buckingham-Shum, S. J., Hammond, N. (1994) Argu-
mentation-based design rationale: What use at what
cost? Human-Comput. Stud., 40(4), 603–652

3. Conklin, J. E., Burgess Yakemovic K. C. (1991) A
process-oriented approach to design rationale. Human-
Comput. Interaction, 6(3–4), 357–391

4. Gruber, T. R., Russell, D. M. (1992) Design knowl-
edge and design rationale: A framework for represen-
tation, capture, and use. Technical Report KSL 90–45,
Knowledge Systems Laboratory, Stanford University

5. MacLean, A., Young, R., Belloti, V., Moran, T. (1991)
Questions, options, and criteria: Elements of design
space analysis. Human-Comput. Interaction, 6(3–4),
201–250

6. Rosenman, M. A., Gero, J. S. (1994) The what, the
how and the why in design. Appl. Artif. Intell., 8(2),
199–218

7. Klein, M. (1993) Capturing design rationale in concur-
rent engineering teams. IEEE Computer, 26(1), 39–47

8. Guindon, R., Krasner, H., Curtis, B. (1987) Break-
downs and processes during the early activities of
software design by professionals. In: Olson, G. M.
(ed.) Empirical Studies of Programmers: Second
Workshop, Ablex, pp 65–82

9. Prabhakar, S., Goel, A. K. (1998) Functional modeling
for enabling adaptive design of devices for new
environments. Artif. Intell. in Eng., 12(4), 417–444

10. Ullman, D. G., Dietterich, P. G., Stauffer, L. A. (1988)
A model of the mechanical design process based on
empirical data. Artif. Intell. for Eng. Design, Analysis
and Manuf., 2(1), 33–52

11. Moran, T. P., Carroll, J. M. (eds.) (1996) Design
Rationale: Concepts, techniques, and use. Lawrence
Erlbaum

12. Lee, J. (1997) Design rationale systems: Understanding
the issues. IEEE Expert/Intelligent Systems and their
Applic., 12(3), 78–85

13. Thompson, J. B., Lu, S. C. Y. (1989) Representing
and using design rationale in concurrent product and
process design. In: Chao, N. H., Lu, S. C. Y. (eds)
Concurrent Product and Process Design, ASME Win-
ter Annual Meeting, ASME, pp 109–115

14. Banares-Alcantara, R., King, J. M. P. (1997) Design
support systems for process engineering iii – design
rationale as a requirement for effective support. Com-
put. and Chem. Eng., 21(3), 263–276

15. King, J. M. P., Banares-Alcantara, R. (1997)
Extending the scope and use of design rationale. Artif.
Intell. for Eng. Design, Analysis and Manuf., 11(2),
155–167

16. Fischer, G., McCall, R., Morch, A. (1989) Design
environments for constructive and argumentative
design. In: Bice, K., Lewis, C. (eds.), Conference on
Wings for the Mind, Addison-Wesley, pp 269–275

17. Kunz, W., Rittel, W. (1970) Issues as elements of
information systems. Working paper 131, Center for
Planning and Development Research, University of
California, Berkeley

18. Shipman III, F. M., McCall, R. J. (1997) Integrating
different perspectives on design rationale: Supporting
the emergence of design rationale from design com-
munication. Artif. Intell. for Eng. Design, Analysis
and Manuf., 11(2), 141–154

19. Gruber, T. R., Russell, D. M. (1992) Generative design
rationale: Beyond the record and replay paradigm.
Technical Report KSL 92–59, Knowledge Systems
Laboratory, Stanford University

20. McCall, R. J. (1991) PHI: A conceptual foundation
for design hypermedia. Design Studies, 12(1), 30–41

21. Fischer, G., McCall, R. (1989) JANUS: Integrating
hypertext with a knowledge-based design environment.
In: Halasz, F., Meyrowitz, N. (eds.), Hypertext,
Addison-Wesley, pp pages 105–117

22. Lubars, M. D. (1991) Representing design depen-
dencies in an issue-based style. IEEE Software, 6(4),
81–89

23. Mark, W., Tyler, S., McGuire, J., Schlossberg, J.
(1992) Commitment-based software development.
IEEE Trans. Softw. Eng., 18(10), 870–886

24. Garcia, A. C. B., Howard, C. H. Acquiring design
knowledge through design decision justification. Artif.
Intell. for Eng. Design, Analysis and Manuf., 6(1),
59–71



233A Survey of Design Rationale Systems

25. Ramesh, B., Dhar, V. (1992) Supporting systems
development using knowledge captured during require-
ments engineering. IEEE Trans. Softw. Eng., 18(6),
498–511

26. Ramesh, B., Sengupta, K. (1995) Multimedia in a
design rationale decision support system. Decision
Support Syst., 15(3), 181–196

27. Garcia, A. C. B., de Souza C. S. (1997) Add1:
Including rhetorical structures in active documents.
Artif. Intell. for Eng. Design, Analysis and Manuf.,
11(2), 109–124

28. de la Garza, J. M., Alcantara Jr, P. T. (1997) Using
parameter dependency network to represent design
rationale. J. Comput. in Civil Eng., 11(2), 102–112

29. de la Garza, J. M., Ramakrishnan, S. (1995) A tool
for designers to record design rationale of a con-
structed project. 10th International Conference on
Applications of Artificial Intelligence in Engineering,
Southampton, U.K. Computational Mechanics Publi-
cations, pp 533–540

30. Chandrasekaran, B., Iwasaki, Y. (1993) Functional
representation as design rationale. IEEE Computer,
26(1), 48–56

31. Chung, P. W. H., Goodwin, R. (1998) An integrated
approach to representing and accessing design ration-
ale. Eng. Applic. Artif. Intell., 11(1), 149–159

32. Myers, K. L., Zumel, N. B., Garcia, P. (1999) Auto-
mated capture of rationale for the detailed design
process. In: Uthurusamy, R: Hayes-Roth, B. (eds.),
Eleventh Conference on Innovative Applications of
Artificial Intelligence, AAAI Press, pp 876–883

33. Gruber, T. R., Russell, D. M. (1992) Derivation and
use of design rationale information as expressed by
designers. Technical Report KSL 92–64, Knowledge
Systems Laboratory, Stanford University

34. Guindon, R. (1990) Knowledge exploited by experts
during software system design. Int. J. Man-Machine
Stud., 33, 279–304

35. Shipman III, F. M., McCall, R. J. (1994) Supporting
knowledge-base evolution with incremental formaliz-
ation. In: Adelson, B., Dumais, S., Olson, J. (eds.),
Human Factors in Computing Systems: ‘Celebrating
Interdependence’, Boston, MA: ACM/SIGCHI,
pp 285–291

36. Brazier, F. M. T., Van Langen, P. H. G., Treur, J.
(1997) A compositional approach to modelling design
rationale. Artif. Intell. for Eng. Design, Analysis and
Manuf., 11(2), 125–139

37. Goel, A. (1991) Model revision: A theory of incremen-
tal model learning. 8th International Conference on
Machine Learning, Chicago, IL. Morgan Kaufman,
pp 605–609

38. Doyle, J. (1979) A truth-maintenance system. Artif.
Intell., 12(3), 231–272

39. Liang, J., Shah, J. J., D’Souza, R., Urban, S. D.,
Ayyaswamy K., Harter, E., Bluhm, T. (1999) Syn-
thesis of consolidated data schema for engineering
analysis from multiple STEP application protocols.
Comput. Aided Design, 31(7), 429–447

40. Shah, J. J., Rangaswamy, S., Qureshi, S., Urban, S.,
(1999) Design history system: Data models and proto-
type implementation. Knowledge Intensive Computer
Aided Design, Kluwer, pp 91–114

41. Fischer, G., Lemke, A. C., McCall, R. (1991) Making

argumentation serve design. Human-Comput. Interac-
tion, 6(3–4), 393–419

42. Buckingham-Shum, S. J., MacLean, A., Bellotti, V.
M. E., Hammond, N. V. (1997) Graphical argumen-
tation and design cognition. Human-Comput. Interac-
tion, 12(3), 267–300

43. Lee J. (1990) SIBYL: A qualitative decision manage-
ment system. In: Winston, P. H., Shellard, S. A. (eds.),
Artifical Intelligence at MIT: Expanding Frontiers,
Vol. 1, The MIT Press, pp 106–133

44. Franke, D. W. (1991) Deriving and using descriptions
of purpose. IEEE Expert/Intelligent Systems and their
Applic., 6(2), 41–47

45. Bobrow, D. G. (1984) Qualitative reasoning about
physical systems: An introduction. Artif. Intell., 24(1–
3), 1–5

46. Fowler, J. E. (1996) Variant design for mechanical
artifacts: A state-of-the-art survey. Eng. with Comput.,
12, 1–15

47. Goel, A. (1991) A model-based approach to case
adaptation. 13th Annual Conference of the Cognitive
Science Society, Cognitive Science Society, Lawrence
Erlbaum, pp 143–148

48. MacGregor, R. (1990) The evolving technology of
classification-based knowledge representation systems.
In: Sowa, J. F. (ed.), Principles of Semantic Networks:
Explorations in the Representation of Knowledge.
Morgan Kaufman

49. Mann, W. C., Thompson, S. A. (1987) Rhetorical
structure theory: A theory of the text organization.
Technical Report ISURS-87-190, Information
Science Institute

50. Sowa, J. F. (1984) Conceptual Structures: Information
Processing in Mind and Machine. Addison Wesley

51. Brazier, F. M. T., Van Langen P. H. G., Treur, J.,
Wijngaards, N. J. E., Willems, M. (1996) Modelling
an elevator design task in DESIRE: the vt example.
Int. J. Human-Comput. Stud., 44(3–4), 469–520

52. Poltrock, S. E., Grudin, J. (1999) Cscw, groupware
and workflow: Experiences, state of the art, and future
trends. ACM SIGCHI Tutorial, Pittsburgh, PA

53. Brazier, F. M. T., Van Langen, P. H. G., Treur, J.
(1995) Modelling conflict management in design: An
explicit approach. Artif. Intell. for Eng. Design, Analy-
sis and Manuf., 9(4), 355–366

54. Gruber, T. R., Russell, D. M. (1991) Interactive acqui-
sition of justifications: Learning why by being told
what. IEEE Expert/Intelligent Systems and their
Applic., 6(4), 65–75

55. Stahovich, T. F. (1997) Interpreting the engineer’s
sketch: A picture is worth a thousand constraints. In:
Anderson, M. (ed.), AAAI Symposium on Reasoning
with Diagrammatic Representations II, Providence,
Rhode Island. AAAI Press, pp 31–38

56. Stahovich, T. F., Davis, R., Shrobe, H. (1996) Gener-
ating multiple new designs from a sketch. The
National Conference on Artificial Intelligence, Port-
land, Oregon. AAAI Press, pp 1022–29

57. Aamodt, A., Plazas, E. (1994) Case-based reasoning:
Foundational issues, methodological variations, and
system approaches. AI Comm., 7(1), 39–52

58. Bardasz, T., Zeid, I. (1991) Applying analogical prob-
lem solving to mechanical design. Int. J. Comput.
Aided Design, 23(3), 202–212



234 W. C. Regliet al.

59. Bardasz, T., Zeid, I. (1992) Cognitive models of mem-
ory for mechanical design problems. Int. J. Comput.
Aided Design, 24(6), 327–342

60. Maher, M. L., Balachandran, M. B., Zhang, D. M.
(1995) Case-Based Reasoning in Design. Lawrence
Erlbaum

61. Gruber, T. R. (1992) Model formulation as a problem-
solving task: Computer-assisted engineering modeling.
Int. J. Intell. Syst., 8, 105–128 (Also available as
technical report KSL-92-57 at Knowledge Systems
Laboratory, Stanford University)

62. Suh, N. P. (1990) The Principles of Design, Vol. 1.
Oxford University Press

63. Lakin, F., Wambaugh, H., Leifer, L., Cannon, D.,
Sivard, C. (1989) The electronic design notebook:
Performing medium and processing medium. The Vis-
ual Computer: Int. J. Comput. Graphics, 5, 214–226

64. Sycara, K., Navinchandra, D. (1992) Retrieval stra-
tegies in a case-based design system. In: Tong, C.,
Sriram, D., (eds.), Artificial Intelligence in Engineering
Design, Vol. II. Academic Press

65. Laiserin, J. (1999) A new kind of CAD–Communi-
cation-Aided Design. CADENCE, pp 18–26

66. Ginsberg, M. L. (1991) Knowledge interchange for-
mat: The KIF of death. AI Mag., 12(3), 57–63

67. Bobrow, B. G., Norman, D. (1977) An overview of
KRL: A knowledge representation language. Cognitive
Sci., 1, 3–46

68. Brachman, R. J., Schmolze, J. G. (1985) An overview
of the KL-ONE representation system. Cognitive Sci.,
9, 171–216

69. Evett, M. P., Hendler, J. A., Spector, L. (1994) Parallel
knowledge representation on the Connection Machine.
J. Parallel and Distributed Comput., 22, 168–184

70. Stein, L. A. (1996) Science and engineering in knowl-
edge representation and reasoning. AAAI Mag., 17(4),
77–83

71. Brachman, R. J., Levesque, H. J. (eds) (1985) Read-
ings in Knowledge Representation. Morgan Kaufmann

72. Chittaro, L., Kumar, A. N. (1998) Reasoning about
function and its application to engineering. Artif.
Intell. in Eng., 12(4), 331–226

73. Kumar, A. N., Upadhyaya, S. J. (1998) Component-
ontological representation of function for reasoning
about devices. Artif. Intell. in Eng., 12(4), 399–415

74. Kim, J., Ringo Ling, S., Will, P. (1997) Ontology
engineering for active catalog. Technical report, The
University of Southern California, Information
Sciences Institute

75. Schlenoff, C., Denno, P., Ivester, R., Libes, D., Szyk-
man, S. (1999) An analysis of existing ontological
systems for applications in manufacturing. ASME
Design Engineering Technical Conferences, 19th Com-
puters and Information in Engineering Conference,
New York, NY. ASME Press

76. Szykman, S., Racz, J. W., Sriram, R. D. (1999) The
representation of function in computer-based design.
ASME Design Engineering Technical Conferences,
11th International Conference on Design Theory and
Methodology, New York, NY. ASME Press

77. Szykman, S., Senfaute, J., Sriram, R. D. Using XML
to describe function and taxonomies in computer-
based design. ASME Design Engineering Technical

Conference, 19th Computers and Information in
Engineering Conference, New York, NY. ASME Press

78. Chen, A., McGinnis, B., Ulman, D. G., Dietterich, T.
G. (1990) Design history knowledge representation
and its basic computer implementation. In: Rinderle,
J. R. (ed.), Proceedings of the Design Theory and
Methodology Conference, ASME, 175–184

79. Catron, B., Ray, S. (1991) Alps: A language for
process specification. Int. J. Comput. Integrated
Manuf. 4(2), 105–113

80. Schlenoff, C., Knutilla, A., Ray, S. (1996) Unified
process specification language: Requirements for
modeling process. Technical Report NISTIR 5910,
National Institute of Standards and Technology, Gai-
thersburg, MD

81. Dong, A., Agogino, A. (1997) Text analysis for con-
structing design representations. Artif. Intell. in Eng.,
11(2), 65–75

82. Thompson, J. B., Liu, S. C.-Y. (1990) Design evol-
ution management: A methodology for representing
and utilizing design rationale. Proceedings of the
Second International ASME Conference on design
Theory and Methodology

83. Urban, S. D., Ayyaswamy, K., Fu, L., Shah, J. J.,
Liang, J. (1999) Integrated product data environment:
Data sharing across diverse engineering applications.
Int. J. Comput. Integrated Manuf., 12(6), 525–540

84. Liang, J., Shah, J. J., Souza, R. D., Urban, S. D.,
Ayyaswamy, K., Harter, E., Bluhm, T. (1999) Syn-
thesis of consolidated data schema for engineering
analysis from multiple step application protocols. Int.
J. Comput. Aided Design, 21, 429–447

85. Xue, D., Yadav, S., Norrie, D. H. (1999) Knowledge
base and database representation for intelligent concur-
rent design. Comput. Aided. Design., 31(2), 131–145

86. Steels, L. (1990) Components of expertise. Al Mag.,
11(2), 28–49

87. Gruber, T. R. (1990) The role of standard knowledge
representation for sharing knowledge-based tech-
nology. Technical Report KSL 90–53. Knowledge Sys-
tems Laboratory, Stanford University

88. Cutkosky, M. R., Tenenbaum, J. M., Glicksman, J.
(1996) Madefast: Collaborative engineering over the
internet. Comm. ACM, 39(9), 78–87

89. Olsen, G. R., Cutkosky, M., Tenenbaum, J. M.,
Gruber, T. R. (1994) Collaborative engineering based
on knowledge sharing agreements. ASME Database
Symposium. Minneapolis, MN

90. Tove, G., Cutkosky, M. R., Leifer, L. J., Tenenbaum,
J. M., Glicksman, J. (1993) Share: A methodology
and environment for collaborative product develop-
ment. IEEE Workshop on Infrastructure for Collabor-
ative Technologies (Also available as Stanford CDR-
TR #19930507)

91. Cutkosky, M. R., Tenenbaum, J. M. (1992) Toward
a framework for concurrent design. Int. J. Syst. Auto-
mation: Res. and Applic., 1(3), 239–261

92. Cutkosky, M. R., Engelmore, R. S., Fikes, R. E.,
Genesereth, M. R., Gruber, T. R., Mark, W. S., Tenen-
baum, J. M., Weber, J. C. (1993) Pact: An experiment
in integrating concurrent engineering systems. IEEE
Computer, 26(1), 28–38

93. Sriram, D., Stephanopoulos, G., Logcher, R., Gossard,
D., Groleau, N., Serrano, D., Navinchandra, D. (1989)



235A Survey of Design Rationale Systems

Knowledge-based systems applications in engineering
design research at mit. Al Mag., 10(3), 79–96

94. Sriram, R. D. (1997) Intelligent Systems for Engineer-
ing: A Knowledge-Based Approach. Springer-Verlag

95. Duffy, A. H. B. (1997) The ‘what’ and ‘how’ of
learning in design. IEEE Expert/Intelligent Systems
and their Applic., 12(3), 71–76

96. Sim, S. K., Duffy, A. H. B. (1998) A foundation for
machine learning in design. Artif. Intell. for Eng.
Design, Analysis and Manuf., 12(2), 193–209

97. Umeda, Y., Tomiyama, T. Functional reasoning in
design. IEEE Expert/Intelligent Systems and their
Applic., 12(2), 42–48

98. Duffy, S. M., Duffy, A. H. B. (1996) Sharing the
learning activity using intelligent cad. Artif. Intell. for
Eng. Design, Analysis, and Manuf., 10(2), 83–100

99. Gero, J. S., Sudweeks, F. (eds.), Second International
Conference on Artificial Intelligence in Design.
Kluwer Academic

100. Liu, X., Gan, M. (1991) A preliminary structural
design expert system (spred-1) based on neural net-
works. In: Gero, J. S. (ed). First International Confer-
ence on Artificial Intelligence in Design (AID’91),
Edinburgh, Scotland, pp 785–799.

101. Maher, M. L., Brown, D. C., Duffy, A. H. B. (1994)
Special issue on machine learning in design. Artif.
Intell. for Eng. Design, Analysis and Manuf., 8(2),
81–82

102. Schreiber, G., Wielingas, B. (1997) Configuration-
design problem solving. IEEE Expert/Intelligent Sys-
tems and their Applic., 12(2), 49–56

103. Sycara, K., Navinchandra, D. (1989) Representing
and indexing design cases. Proceedings of the Second
International Conference on Industrial Engineering
Applications of Artificial Intelliegence and Expert
Systems, Tullahoma, T.N. ACM Press, pp 735–741

104. Mostow, J. (1989) Design by derivational analogy:
Issues in the automated replay of design plans. Artif.
Intell., 40(1–3), 119–184

105. Pena-Mora, F., Vadhavkar, S. (1997) Augmenting
design patterns with design rationale. Artif. Intell.
For Eng. Design, Analysis and Manuf., 11(2), 93–108

106. Tazi, S., Novick, D. (1998) Design rationale for
complex system documentation. Conference on Com-
plex Systems, Intelligent Systems and Interface,
Nimes, France

107. Carey, T., McKerlie, D., Wilson, J. (1996) HCI
design rationale as a learning resource. In: Moran, T.

P., Carroll, J. M. (eds.), Design Rationale Concepts,
Techniques and Use, Ist ed. Lawrence Erlbaum.
pp 373–392

108. Casaday, G. (1996) Rationale in practice: Templates
for capturing and applying design experience. In:
Moran, T.P., Carroll, J. M. (eds.), Design Rationale
Concepts, Techniques and Use, Ist ed. Lawrence
Erlbaum, pp 351–372

109. Johnson, C.W. (1996) Literate specification: Using
design rationale to support formal methods in the
development of human-machine interfaces. Human-
Comput. Interaction, 11(4), 291–320

110. Putnam, R. D. (1993) Making Democracy Work:
Civic Traditions in Modern Italy. Princeton Univer-
sity Press

111. Orlikowski, W. J. (1992) Learning from notes:
Organizational issues in groupware implementation.
Conference on Computer Supported Cooperative
Work (CSCW), Toronto, Canada. ACM/SIGCHI,
pp 362–369

112. Davenport, T.H., Pruzak, L. (1998) Working Knowl-
edge: How Organizations Manage What They Know,
Vol. 1. Harvard Business School Publishing

113. Grudin, J. (1994) Groupware and social dynamics.
Comm. ACM, 37(1), 93–105

114. Davenport, T. H. (1994) Saving IT’s soul: Human-
centered information management. Harvard Bus.
Rev., 94(2), 39–53

115. Mackayn, W. (1990) Patterns of sharing customizable
software. Conference on Computer Supported Coop-
erative Work (CSCW), Los Angles, CA.
ACM/SIGCHI, pp 209–221

116. Greenbaum, J., Kyng, M. (eds.) (1991) Design at
Work – Cooperative Design of Computer Systems.
Laurence Erlbaum

117. Fischer, G. (1994) Domain-oriented design environ-
ments. Applications and Impacts, Information Pro-
cessing, pages Hamburg, Germany. International Fed-
eration for Information Processing, North-Holland,
pp 115–122

118. Orlikowski, W. J., Hofman, J. D. (1997) An impro-
visational model for change management: The case
of groupware technologies. Sloan Manage. Rev.,
38(2), 11–21

119. Zimmermann, B., Selvin, A. M. (1997) A framework
for assessing group memory approaches for software
design projects. Conference on Designing Interactive
Systems, New York, N.Y. ACM Press, pp 417–426


